The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions.
نویسندگان
چکیده
The secreted protein Dickkopf-1 (Dkk1) is an antagonist of canonical Wnt signaling, expressed during fracture healing. It is unclear how it is involved in the mechanical control of bone maintenance. We investigated the response to administration of a Dkk1 neutralizing antibody (Dkk1-ab) in metaphyseal bone under different loading conditions, with or without trauma. In this three part experiment, 120 rats had a screw or bone chamber inserted either unilaterally or bilaterally in the proximal tibia. Mechanical (pull-out) testing, μCT and histology were used for evaluation. The animals were injected with either 10mg/kg Dkk1-ab or saline every 14days for 14, 28, or 42days. Antibody treatment increased bone formation around the screws and improved their fixation. After 28days, the pull-out force was increased by over 100%. In cancellous bone, the bone volume fraction was increased by 50%. In some animals, one hind limb was paralyzed with Botulinum toxin A (Botox) to create a mechanically unloaded environment. This did not increase the response to antibody treatment with regard to screw fixation, but in cancellous bone, the bone volume fraction increased by 233%. Thus, the response in unloaded, untraumatized bone was proportionally larger, suggesting that Dkk1 may be up-regulated in unloaded bone. There was also an increase in thickness of the metaphyseal cortex. In bone chambers, the antibody treatment increased the bone volume fraction. The results suggest that antibodies blocking Dkk1 might be used to stimulate bone formation especially during implant fixation, fracture repair, or bone disuse. It also seems that Dkk1 is up-regulated both after metaphyseal trauma and after unloading, and that Dkk1 is involved in mechano-transduction.
منابع مشابه
Wnt signaling and metaphyseal bone healing
This thesis relates to some new aspects on the regulation of bone healing. In the last few years, Wnt signaling has been shown to play a central role in bone biology. As well as being involved in bone maintenance and repair, Wnt signaling has been presented as one of the ke y pathways through which bone responds to mechanical load. Two secreted extracellular inhibitors of Wnt signaling, scleros...
متن کامل•biomechanics of a Stemless, Metaphyseal Fixation Femoral Design: Effects of Screw Fixation and Interface Conditions
INTRODUCTION: Bone conserving designs, such as hip resurfacings, are an alternative treatment option to conventional total hip arthroplasty (THA) in young, active patients. Previous studies have shown that medullary fixation can result in significant proximal bone resorption through stress shielding [1,2], while it has been suggested that hip resurfacing arthroplasty will load the proximal femo...
متن کاملEvaluation of the Effect of Zirconia and Titanium Abutments on Microleakage of Implant-Abutment Interface Under Oblique Cyclic Loading In Vitro
Background and Aim: Oral bacteria can proliferate in the implant-abutment interface (IAI) and cause inflammation in the peri-implant tissues and adjacent bone. This study aimed to assess the effect of zirconia and titanium abutments on the microleakage of the IAI under oblique cyclic loading conditions. Materials and Methods: In this in-vitro study, 12 implant-abutment assemblies with zirconia...
متن کاملRadiographic Comparison of Crestal Bone Loss Around Two Implant Systems with Different Surface Roughness: A Retrospective Study
Background and Aim: This retrospective study aimed to investigate the effects of surface roughness and implant body design on the amount of crestal bone loss around implant. Materials and Methods: In this retrospective study, dental records of 87 patients who received 139 implants were evaluated. The ITI group received 63 implants with moderate roughness, while the DIO group received 76 implan...
متن کاملGlucocorticoids inhibit shaft fracture healing but not metaphyseal bone regeneration under stable mechanical conditions
OBJECTIVES Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 48 5 شماره
صفحات -
تاریخ انتشار 2011